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Linear internal waves in inviscid bounded fluids generally give a mathematically
ill-posed problem since hyperbolic equations are combined with elliptic boundary
conditions. Such problems are difficult to solve. Two new approaches are added to
the existing methods: the first solves the two-dimensional spatial wave equation by
iteratively adjusting Cauchy data such that boundary conditions are satisfied along a
predefined boundary. After specifying the data in this way, solutions can be computed
using the d’Alembert formula.

The second new approach can numerically solve a wider class of two dimensional
linear hyperbolic boundary value problems by using a ‘boundary collocation’
technique. This method gives solutions in the form of a partial sum of analytic
functions that are, from a practical point of view, more easy to handle than solutions
obtained from characteristics. Collocation points have to be prescribed along certain
segments of the boundary but also in the so-called fundamental intervals, regions
along the boundary where Cauchy data can be given arbitrarily without over-
or under-determining the problem. Three prototypical hyperbolic boundary value
problems are solved with this method: the Poincaré, the Telegraph, and the Tricomi
boundary value problem. All solutions show boundary-detached internal shear layers,
typical for hyperbolic boundary value problems. For the Tricomi problem it is found
that the matrix that has to be inverted to find solutions from the collocation approach
is ill-conditioned; thus solutions depend on the distribution of the collocation points
and need to be regularized.

1. Introduction
It is well known that a particular type of linear second-order partial differential

equation (PDE) can be combined only with a particular type of boundary condition
(BC) to give a well-posed boundary value problem (BVP) (Morse & Feshbach 1953,
p. 706). (A general definition of well-posed is given in Payne (1975). Here it implies
that a unique solution exists that changes continuously with the boundary geometry.)
For problems with a fully closed boundary, for instance, only elliptic PDEs with
Dirichlet or von Neumann BCs are well-posed. Nevertheless, many relevant BVPs of
mathematical physics in general and geophysical fluid dynamics (GFD) in particular
are governed by linear second order hyperbolic equations in closed domains and
hence are ill-posed. Consider for example an inviscid fluid comprised between two co-
rotating spheres (Stewartson & Rickard 1969; Brown & Stewartson 1976). In GFD
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it is important to understand the free periods of oscillation of this BVP, which might
help to understand the motion in the Earth’s fluid outer core, and the Earth’s oceans
or its atmosphere (when the tropopause is seen as a wave reflector). Nevertheless, this
problem is ill-posed since a hyperbolic PDE has to be combined with Dirichlet BCs.

Some explicit solutions of hyperbolic BVPs have been found for particular
geometries, for example a cylinder (Kelvin 1880) or a full elipsoid (Bryan 1889), all
being continuously differentiable (smooth) functions. In general, however, a typical
feature of hyperbolic BVPs is the occurrence of singularities (Stewartson & Rickard
1969; Rieutord, Georgeot & Valdettaro 2000; Maas 2005).

The situation is summarized in the apposite remark by Professor A. Seeger in
the preface to Slavyanov & Lay (2000): ‘The mathematical description of physical
problems always requires simplifications, and those often introduce singularities. The
essentials of a physical problem are, in fact, usually contained in the location and
character of the singularities. However, numerical handling of singularities, be they in
the equations or in the solutions, is always a delicate matter, for which still no general
recipe is available.’ In the GFD context, the simplifications leading to singularities are
the neglect of nonlinearity and viscosity. The essentials of a hyperbolic BVP appear
to be contained in the web of characteristics† and its limit cycle, called the wave
attractor (Maas & Lam 1995) on which the velocity field becomes singular. And,
indeed, there is no general recipe for handling hyperbolic BVPs.

A method that maps characteristics into certain boundary regions (called
fundamental intervals) to find, at discrete points, exact solutions of the two-
dimensional Poincaré BVP was developed by Maas & Lam (1995). This Poincaré
BVP is written ψyy − ψzz = 0, with ψ = 0 along the boundary, where ψ(y, z) is the
dependent variable, and y, z are the independent variables. Cauchy data, containing
directional derivatives in the direction normal to the boundary, are given in the
fundamental intervals only, where they can be prescribed arbitrarily without over-or
under-determining the problem. The disadvantage of the Maas & Lam approach is
that it works only for the two-dimensional Poincaré equation and a generalization to
other equations seems to be impossible.

To attack hyperbolic BVPs numerically, singularities have to be regularized to
find meaningful approximate solutions. Several authors have used small viscosity
for regularization (Hollerbach & Kerswell 1995; Rieutord, Georgeot & Valdettaro
2001; Ogilvie & Lin 2004). Recently, Swart et al. (2007) used a minimal-energy
regularization to numerically solve the two-dimensional Poincaré equation. In contrast
to the methods of Maas & Lam (1995) and Swart et al. (2007), the small-viscosity
method can be applied to a larger class of hyperbolic BVPs. However, as pointed
out by Swart et al. (2007), for very small viscosity the existence of many nearby
eigenvalues makes it difficult to find all solutions on a finite grid so that the problem
remains ill-posed from a numerical point of view.

In the present paper we will add two alternatives to the methods above. The
first solves the two-dimensional Poincaré equation as a well-posed Cauchy problem,
perturbing the boundary data iteratively. In contrast to Maas & Lam (1995), no
knowledge about fundamental intervals is necessary; in contrast to Swart et al. (2007)
no regularization is necessary. However, the method works only when we can start
the iteration with a geometry for which the Poincaré BVP possesses smooth solutions
that can be found by using separation of variables. In this sense the method is less

† A second-order hyperbolic PDE has two families of real characteristics. Following a
characteristic and switching from one family to the other at boundary reflections yields a web
of characteristics that converges towards a limit cycle.
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flexible than the method of Maas & Lam (1995) or Swart et al. (2007). The second
method proposed here superposes exact smooth solutions of a separable and solvable
hyperbolic BVP to construct approximate solutions in a perturbed domain. In contrast
to the three methods mentioned above, this ‘boundary collocation’ technique can be
applied to more general hyperbolic BVPs. The method appears to be simpler than
numerical low-viscosity methods. However, it is less flexible in the sense that it cannot
be applied to arbitrary geometries.

By use of the boundary collocation technique, we try to answer the question of
whether wave attractors play a similar role for non-separable BVPs† as for the two-
dimensional Poincaré problem, the archetype of a separable BVP. For non-separable
problems, characteristics can generally not be used to construct solutions. The question
is whether wave attractors of non-separable equations still contain the essentials of the
problem, that is singularities and, adding viscosity, local regions of strong dissipation.
For slightly viscous problems, this question has already been addressed by comparing
localized eigenfunctions with corresponding non-viscous wave attractors (Dintrans,
Rieutord & Valdettaro 1999; Rieutord et al. 2001). We investigate this question by
studying the Telegraph equation ψyy − ψzz + α2ψ = 0 (with α2 constant) and the
Tricomi equation ψyy + yψzz = 0 for geometries corresponding to a simple wave
attractor. In addition, in Appendix B, we estimate the rate of dissipation from the
spectral coefficients of the series solutions of the two-dimensional Poincaré problem.

The Telegraph equation forms a model for time-harmonic small-amplitude internal
gravity waves in a strongly stratified fluid. The Tricomi equation is archetypal for
problems that are hyperbolic in some part of the domain of interest but elliptic
elsewhere. Such mixed problems are important in GFD (Friedlander 1982; Friedlander
& Siegmann 1982; Dintrans et al. 1999), for example in the context of trapped
equatorial waves (Maas & Harlander 2007). Such waves can propagate in the
hyperbolic region but are trapped between turning surfaces. Beyond those surfaces
the equation is elliptic and wave propagation is not possible.

The paper is organized as follows. In § 2 we give some physical motivation for
the equations considered. In § 3 we describe the iterative technique by solving the
two-dimensional Poincaré BVP. We consider an almost rectangular confinement but
with sloping parts at the bottom. In § 4 we explain the boundary collocation method
by considering three BVPs: the two-dimensional Poincaré, the Telegraph, and the
Tricomi BVP for half-trapezoidal regions. Finally, in § 5 we give a brief summary and
conclusions.

2. Physical motivation
In the following we derive three ‘prototypical’ equations from the Boussinesq

equations. Together with appropriate boundary conditions, these three equations
form the hyperbolic boundary value problems that will be solved later.

The zonally symmetric (∂/∂x = 0) Boussinesq equations for a rotating fluid are, in
a Cartesian frame (y, z),

ut − f v = 0, (2.1)

† Here the separability of the equation’s operator is meant. If Lψ = 0 (where L is a
linear second-order operator) can be written as P1P2ψ = 0 with two first-order linear operators
Pi = ai(y, z)∂/∂y + bi(y, z)∂/∂z, i = 1, 2, then L is called separable. Introducing new coordinates
such that ∂η = P1 and ∂ζ = P2 (with ηzζy − ηyζz �= 0), the PDE can be written as ψηζ = 0, thus is
solvable for any closed domain (Maas & Lam 1995).



334 U. Harlander and L. R. M. Maas

vt + f u + py/ρ0 = 0, (2.2)

wt + pz/ρ0 + gρ/ρ0 = 0, (2.3)

ρt − (N2ρ0/g)w = 0, (2.4)

vy + wz = 0, (2.5)

where t is time, v = (u, v, w) is the velocity vector, p perturbation pressure, ρ

perturbation density, ρ0(z) the background density, N2 = −gρ0z
/ρ0 the buoyancy

frequency squared, f the Coriolis parameter, and g is the acceleration due to gravity.
Subscripts t, y, z denote partial derivatives. We restrict consideration to uniformly
stratified fluids where N is constant. This system of equations can be reduced to a
single equation in w. For f = 0 we obtain

∇2wtt + 2α wttz + N2wyy = 0, (2.6)

with ∇ = (∂/∂y, ∂/∂z) and α = −N2/2g.
Because of zonal symmetry we can introduce a streamfunction v = −ψz and

w = ψy . Using ψ = ψ̂(y, z) exp(αz − iωt), where ω is the wave’s frequency, and
i = (−1)1/2, and defining y = ((N2 − ω2)/ω2)1/2ỹ, we obtain

ψ̂ỹỹ − ψ̂zz + α2ψ̂ = 0. (2.7)

This is the Telegraph equation. Boundary conditions are ψ̂ = 0 at the boundary.
Frequently, it is assumed that α is small and the second term of (2.6) is neglected.

Then (2.7) reduces to the two-dimensional Poincaré equation

ψ̂ỹỹ − ψ̂zz = 0, (2.8)

with ψ̂ = 0 at the boundary.
Finally, replacing ρ0(z) by a constant ρ̄ in (2.1) to (2.4) and in the denominator of

N2, we consider the hydrostatic, zonally symmetric Boussinesq version of (2.1) to (2.5)
for an equatorial β-plane, where f = βy with β constant. Considering time-harmonic
solutions and introducing a streamfunction in the meridional plane we obtain

ψyy − ω2 − β2y2

N2
ψzz = 0. (2.9)

This equation changes type across two turning curves where y = ±ω/β . Enlarging
one turning curve by introducing βy = ω + εỹ, defining z = (2ε3ω)1/2z̃/(βN ) and
neglecting the order- ε term, we find

ψỹỹ + ỹψz̃z̃ = 0. (2.10)

This is the Tricomi equation, which forms the prototypical mixed problem, hyperbolic
for ỹ < 0 and elliptic for ỹ � 0 with a turning curve at ỹ = 0. Boundary condition is
ψ = 0 along the boundary.

3. Solving Poincaré’s BVP as a Cauchy problem
As stated above, the problem of finding solutions of the two-dimensional Poincaré

BVP

ψyy − ψzz = 0, with ψ = 0 at ∂M, (3.1)

where M denotes the domain of interest and ∂M the closed boundary thereof, has
already been solved by Maas & Lam (1995). However, it is worth tackling this
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Figure 1. Rectangular domain M (bold solid lines) and perturbations (shown by dashed
lines). Thin solid lines show characteristics. Data are given along y = −π/2. The intervals Ij ,
j = 0, . . . , 3 and Lj , j = 1, 2, 3 are defined by characteristics. The intervals Ij are situated on
the data curve, the intervals Lj along the boundary. For more details see the text.

problem from a different perspective. Maas & Lam focused on the possibility of
transforming an ill-posed problem to a well-posed one by reducing the amount of
data along the boundary. Here we consider the problem as a well-posed Cauchy
problem and try to control the boundary by perturbing the Cauchy data iteratively.
The major advantage of this approach is that it does not depend on knowledge of
fundamental intervals. Note that neither the method by Maas & Lam (1995) nor
the method proposed here needs regularization. Moreover, both methods can easily
handle non-smooth solutions.

Step one
Let us start with a certain ψ = ψ0(y, z) that solves (3.1) in the rectangle. Such
solutions can be found by separation of variables as long as the width Ly and the
height Lz of the rectangle are commensurable, that is Ly/Lz = q , where q is a
rational number. We consider a rectangle given by z = 0, 2π, y = −2π, π (see the
bold solid lines in figure 1a). We take f (z) = ψ0(−π/2, z) and g(z) = ψy(−π/2, z) as
(Cauchy) data along the curve y = −π/2. Note that it is not necessary to define f (z)
and g(z) for all z. However, it is not sufficient to define f (z) and g(z) just for the
interval z ∈ [0, 2π]. In fact, the upper boundary of z is given by the upward-sloping
characteristic connecting the data curve with the upper left corner (y, z) = (−2π, 2π)
of the rectangle, and the lower boundary of z is given by the downward-sloping
characteristic connecting the data curve with the lower left corner (y, z) = (−2π, 0)
(see figure 1a).

Since y = −π/2 is a line of symmetry, we assume without loss of generality that
g(z) = 0. As is discussed in Appendix A, at any point P within the domain M , the
streamfunction ψ is given by

ψP = 1
2
((ψ) |A + (ψ) |B), (3.2)
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which is d’Alembert’s formula. A and B are the intersections of the characteristic
curves through P with the curve y = −π/2 (see Appendix A and figure 7a). Note that
owing to the symmetry it is sufficient to consider the solution in the region to the left
of the axis y = −π/2. Let us introduce a ‘perturbation’ of the boundary at the lower
left and lower right corner of M (shown as dashed lines in figure 1). In other words,
we introduce a new zero level set {(y, z) ∈ M : ψ(y, z) = 0} ∈ �2 of the solution in
M . This curve, denoted by l, is given as

z = −(sy + r), (3.3)

where s and r are constants. From the boundary conditions in (3.1) we know that

(ψ) |A= − (ψ) |B (3.4)

along l. This condition enables us to compute the new data in the interval I0 =
[−b, −a] (see figure 1a), where a = π/2 − r/s and b = 2πs − r − 3π/2. Using the
equations for the c+- and c−-characteristics z ∓ y = c± we can relate A and B to the
coordinates y, z of P (see figure 7a):

A = z + y + 1
2
π, (3.5)

B = z − y − 1
2
π. (3.6)

Along l we therefore obtain

A =
z(s − 1) − r + 1

2
πs

s
(3.7)

B =
z(s + 1) + r − 1

2
πs

s
, (3.8)

or

z(A) =
As + r − 1

2
πs

s − 1
(3.9)

z(B) =
Bs − r + 1

2
πs

s + 1
. (3.10)

Finally, from (3.4) we find that in I0

fI0
(A) = −fI1

(B) = −f

(
z(A)(s + 1) + r − 1

2
πs

s

)
, (3.11)

to satisfy the boundary condition along l. The interval I1 corresponding to I0 is

shown in figure 1a.

Step two
In processing the first step we introduced a new zero level set of ψ along l.
Unfortunately, this operation removes the zeros along the boundary in the interval
L1, shown in figure 1b. To correct this, we introduce new data in the interval I1 by
using a similar approach to the one described in detail for step one. From (3.4) we
find that in I1

fI1
(B) = −f (B − 3π), (3.12)

to satisfy the boundary conditions in L1.
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Step three
The correction done for I1 removes the zeros along the upper boundary in L2. This
can be corrected by introducing new data in the interval I2. From (3.4) we find that
in I2

fI2
(A) = −f (4π − A), (3.13)

to satisfy the boundary conditions in L2. As is obvious from figure 1(b), this affects
the zero level in a small piece of l, denoted by L3. We can state that as long as
characteristic focusing is present, I3 ⊂ I0.

Summary of the three steps
Let us briefly summarize the three steps above. The goal of the iteration described
is to modify the data f (z) along y = −π/2 such that the BVP (3.1) is no longer
satisfied for the rectangle but is fulfilled approximately for the trapezium. In step one
we modified f (z) in the interval I0 (see figure 1a) such that ψ = 0 along the sloping
part of the boundary. Unfortunately, the new data in I0 gave a ψ that did not satisfy
the boundary condition in the interval L1 (see figure 1b). Therefore we needed step
two in which we modified f (z) in the interval I1 such that ψ = 0 along the boundary
interval L1. Again, the new data in I1 gave a ψ that did not satisfy the boundary
condition in the interval L2. Thus, we needed a third step in which we modified f (z)
in the interval I2 such that ψ = 0 along the boundary interval L2. After step three we
obtained a ψ that satisfied the boundary condition everywhere, except in small part
of the sloping boundary, L3.

The first cycle of iteration is now complete and we obtain an order-one
approximation of the solution in the deformed domain. To obtain an order-n
approximation, we have to repeat step one to three n times.

Note that in some parts of the domain, the original analytical solution for the
rectangular domain remains intact even when a sloping sidewall is introduced. Such
‘shadow zones’ (Rieutord et al. 2001) are shaded in figure 1b. Note further that the
accuracy of the solution depends on the focusing rate. The stronger the focusing, the
better is the approximation after n iterations. The focusing rate γ is given by the ratio
of the length of I0, denoted by Ī0, and the length of I3, Ī3. More generally, γ = Īk+3/Īk ,
for all k = 0, 1, 2,. . .. The focusing rate can most easily be found by using the two
c+-characteristics, one through the starting point of the slope (y, z) = (−r/s, 0) and
one through its endpoint (y, z) = (−2π, 2πs − r), to compute an interval along the
axis y = −π/2 and compare this with the interval I0. We find

γ =
1 − s

1 + s
. (3.14)

For s = 0 there is no focusing (γ = 1) and smooth solutions can be found. For
s ∈]0, 1[, we obtain focusing; for s ∈]1, ∞[, γ is negative, i.e. we find defocusing. Note
that for the defocusing case also attractors can exist, but then for waves travelling in
the counterclockwise direction. For the critical slope s = 1, focusing becomes infinitely
large (1/γ = ∞) and singularities can be expected along the slope. After n iterations,
the length of the subinterval in I0 (denoted by Ī3n, see figure 1b), is given by

Ī3n = γ nĪ0. (3.15)

In figure 2 we show an example. We used f = − sin z, r = 5.4/(2π − 2.7), and
s = r/2.7. This choice of parameters corresponds to a significant focusing with
γ ≈ 0.28. Figure 2(a) shows ψ0, the solution for the rectangle (solid bold lines in
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Figure 2. Solution ψ corresponding to f (z) = − sin z. (a) Solution for the rectangle shown in
figure 1 (bold solid lines). (b) Solution ψ for the deformed rectangle with r = 5.4/(2π − 2.7),
and s = r/2.7 after five iteration cycles (n = 5). (c) ψ along the slope l and plotted versus y.
(d) Initial data f (z) along y = −π/2 (black line), data after one iteration cycle (n = 1) (red
line). (e) Initial data f (z) along y = −π/2 (black line), data after five iteration cycles (n = 5)
(red line).

figure 1). It was computed by applying (3.2) for a large set of points in M . Next the
boundary is deformed as indicated by the dashed lines in figure 1. The fifth-order
approximation is displayed in figure 2(b). The wave attractor is clearly visible as
an internal boundary layer with large gradients. Figure 2(c) shows ψ when plotted
along the sloping boundary. Obviously, the boundary condition is violated in a small
neighbourhood of the point where the wave attractor is reflected from the slope. From
(3.15) we find that the width of this region is of order 10−3 for n = 5, converging
rapidly to zero for n → ∞. Figure 2(d) shows f (z), z ∈ [−3π, 3π] for n = 0 (black
curve) and n = 1 (red curve), figure 2(e) shows f (z) for n = 0 and n = 5. It can
be seen that three regions with large df/dz develop. For n → ∞, singularities would
arise in these regions. Note that only one of the three singularities of df/dz is
located in M . The other two are outside the domain of interest and correspond to the
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Boundary c− c+

slope f

(
z(A)(s + 1) + r − 1

2
πs

s

)
f

(
z(B)(s − 1) − r + 1

2
πs

s

)
left f (A + 3π) f (B − 3π)
upper f (4π − A) f (4π − B)
lower f (−A) f (−B)

Table 1. Correction formulae for all boundaries. Note that A and B are located in two
different intervals along y = −π/2. For A, the interval is determined by two c−-characteristics,
for B by two c+-characteristics.

extension of the two branches of the attractor that are not connected with y = −π/2
(see figure 2(b)). It is obvious that Cauchy data have to be given outside M also in
order to find a solution in the closed domain M . Note that the solution shown in
figure 2(b) is usually stable with respect to small changes of the slope. However, at
certain slopes, the wave attractor, and thus the solution, changes its shape suddenly.
This behaviour is discussed in more detail by Maas & Harlander (2007).

In summary we give the ‘correction formulae’ for each boundary with respect to
c−- and c+-characteristics in table 1. Note that intersections of a c−-characteristic
with the curve y = −π/2 are denoted by A, and intersections of a c+-characteristic
are denoted by B . The table should be read in the following way: if the left boundary
has to be corrected by changing data in an interval given by two c−-characteristics,
then use fI (A) = f (A + 3π) and so forth.

4. Solving hyperbolic BVPs approximately by a boundary collocation method
In this section we discuss an alternative approach to solve hyperbolic BVPs. Again,

the basic idea is to perturb the boundary of a solved problem. The major advantage
of the method presented is its ability to approximately solve more general problems,
that is, problems that are not separable. In addition, we obtain solutions in the
form of a partial sum of analytic functions. In general, such solutions are more
easy to handle than solutions obtained from characteristics. Finally, the boundary
collocation method gives spectral information about the solution. This can help to
better understand typical features of hyperbolic BVPs.

4.1. Solving the two-dimensional Poincaré BVP for a trapezium

We start by solving the problem considered in § 3. The domain M we begin with is a
square with width π (see figure 3). For this geometry, the BVP (3.1) is solved by

ψ =
∑

n

ψn =
∑

n

an sin ny sin nz, (4.1)

where the an are constant coefficients and n ∈ �. Maas & Lam (1995) showed that for
a square, the an are uniquely determined by the Fourier components of the data f (y)
along the upper boundary, which is a fundamental interval for the square geometry.
This exact relationship is lost if M is changed.

So let us change M by replacing one vertical boundary by a sloping wall.
Fundamental intervals corresponding to a square with a sloping sidewall are shown in
figure 3 by two bold line segments along the upper boundary. In these intervals, data
can be prescribed arbitrarily. This follows from the fact that webs of characteristics
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Figure 3. The domain M , given by a square with a sloping sidewall (light dashed line). The
two fundamental intervals are shown by bold solid lines along the upper boundary. The set of
points where data are prescribed are indicated by dotted lines along the fundamental intervals
and the lower part of the slope. In total there are N + J1 + J2 data points. The wave attractor
is shown by the bold dashed square.

(i.e. characteristics connected at boundary reflections), launched from fundamental
intervals have no reflection point within fundamental intervals. In other words, any
characteristic can uniquely be mapped into one of the fundamental intervals. They
can be found by following the c+-characteristic starting at the lower left corner, and
the c−-characteristic starting at the bottom of the slope. The latter characteristic
shows one reflection at the left boundary.

Obviously, the ψn of (4.1) no longer satisfy the boundary conditions along the
slope. Nevertheless, we can still write the solution in the form (4.1). In practice, the
series has to be truncated, then representing an approximate solution to (3.1)

ψ ≈
N̄∑

n=1

an sin ny sin nz, (4.2)

where N̄ = N +J1 +J2 is the total number of discrete points where data are specified
(see dotted lines along the lower part of the slope and above the two fundamental
intervals in figure 3). Along the slope it is required that ψ = 0; in the two fundamental
intervals we prescribe ψz. In discrete form we obtain

N̄∑
n=1

an sin nys(i) sin n(αys(i) + c) = 0, i = 1, . . . , N, (4.3)

N̄∑
n=1

nan sin nyfk
(i) cos nπ = b(yfk

(i)), i = 1, . . . , Jk, (4.4)

where k = 1, 2, ys(i) are the grid points along the slope (with zs(i) = αys(i) + c,
α and c constants), yf1

(i) the grid points along fundamental interval 1, and yf2
(i)

the grid points along fundamental interval 2 (see figure 3). The vector b stands for
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a prescribed ψz at the grid points along the fundamental intervals. In matrix form
(4.3)–(4.4) is simply

A · a = b, (4.5)

where A is a known N̄ × N̄ matrix, a is an unknown coefficient vector of length N̄ ,
and b a known fundamental data vector of length N̄ . To find the coefficient vector a
we have to invert A.

Figure 4 displays an approximate solution of (3.1) for the trapezium by using (4.2)
and (4.5). The solution, shown in figure 4(a), agrees with the solution presented by
Maas et al. (1997) (their figure 1B). The location of the square-shaped wave attractor
is clearly visible. Note that for this choice of data ψz in the fundamental intervals
(see the caption of figure 4) the solution is continuous but not differentiable at the
location of the wave attractor. Moreover, the solution is antisymmetric with respect
to the vertical and horizontal axes, and symmetric with respect to both diagonal axes.
We note in passing that a zero level set exists at y = π. Consequently, the solution
shown in figure 4(a) is also valid mathematically for a square with length π, although,
from a physical viewpoint, an oblique sidewall with focusing reflections is necessary
for the existence of a wave attractor. It is important to note that for the discretization
given in the caption of figure 4, the condition number κ of A (the ratio of its largest
and smallest singular value) is small enough to do a direct numerical inversion of A.
One must expect to ‘lose log10 κ digits’ when inverting A numerically (Trefethen &
Bau 1997, p. 95). MAPLE uses ten digits as the default value for calculations with
floating point numbers. Thus, κ < 105 might be acceptable for our purposes.

The spectrum, that is the an in (4.2), shown in figure 4(b), clearly reflects the
antisymmetry of the solution. All coefficients with an odd index are zero which
guarantees ψ = 0 along y = z = π, i.e. the antisymmetry of ψ with respect to the
diagonal axis of the wave attractor. The first part of the spectrum, determining the
largest scales of the solution, shows rather irregular oscillations of large amplitude.
For larger wavenumbers (n > 30 say), the coefficients are organized as wave packets.
They determine the scales resolved close to the wave attractor. By removing single
wave packets from the spectrum, we remove part of the fine structure of the wave
attractor but do not alter the gross structure of the solution. In figure 4(c) we plot
a2

n, n = 2, 4, 6,. . . , together with n−2 in a log-log-scale. Obviously, for larger n, the
coefficients converge faster to zero than n−2. In spite of this convergence of the
sequence of coefficients we anticipate the absence of convergence of the series (4.2) at
the attractor, where the streamfunction is not defined (Maas & Lam 1995).

4.2. Solving the Telegraph BVP for a trapezium

In this section we consider the Telegraph equation (2.7). The hyperbolic BVP is

ψyy − ψzz + α2ψ = 0, with ψ = 0 at ∂M, (4.6)

where α is constant. Note that the characteristic curves of (4.6) and (3.1) are identical.
Nevertheless, (4.6) can neither be solved by the characteristic web method of Maas
& Lam (1995), nor the method proposed in § 3, nor by the numerical technique
discussed by Swart et al. (2007). This is because (4.6) has no formal solution ψ =
f (y + z) − g(y − z) that is used in the three methods mentioned. In other words,
the benefit that could be derived from characteristic curves to solve (4.6) and (3.1)
is different (Harlander & Maas 2006). While we have functions f and g invariant
along the characteristic curves for (3.1), such functions do not exist for (4.6), making
the BVP mathematically more difficult. However, the boundary collocation method
described in § 4.1 is flexible enough to be applied to the BVP (4.6).
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Figure 4. Solution of the Poincaré BVP (3.1) for the trapezium: (a) streamfunction,
(b) coefficients an, (c) square of the even coefficients and n−2 (dashed line) in a log-log-frame.
For the chosen geometry fundamental intervals one and two are [0, π/3] and [π, 4π/3]. We
used equally distributed grid points with N = J1 = J2 = 49 (N̄ = 147), ys(1) = 2.136 . . .,
yf1

(1) = 0.209 . . ., and yf2
(1) = 3.162 . . .. The sloping wall is given by z = 3/2y − π, and the

data in fundamental intervals one and two are ψz = sin 3y and ψz = − sin 3y, respectively.
The condition number for A computed with MAPLE is 26921.74.

In a channel with height π solutions of (4.6) are ψn ∼ sin n̂y sin nz, where n̂2 =
n2 + α2. Thus, for a trapezium we can try to find solutions in the form

ψ ≈
N̄∑

n=1

an sin n̂y sin nz. (4.7)

Taking α = −N2/(2g) = −0.9, we proceed analogously to § 4.1 to obtain the matrix
equation (4.5). We use the same position and number of grid points and the same
functions in the fundamental intervals (see the caption of figure 4). The condition
number of A is 2598.86, even smaller than in the previous case. Hence, we can directly
invert the matrix A. For α �= 0, solutions lose the strong symmetry (antisymmetry)
present in figure 4(a). Moreover, in contrast to the solution of the Poincaré BVP, the
solution (4.7) is no longer valid for a square with length π. For the case considered here
(α = −0.9), the spectrum looks qualitatively similar to the one shown in figure 4(b).
However, now both even and odd modes contribute to the solution of (4.6). Most
importantly, the wave attractor is still the dominant feature of the solutions. This
is shown in figure 5, where we compare |∇ψ |2 from solutions of (3.1) and (4.6) for
α = −0.9. We see that for the Telegraph equation, which lacks a direct relationship
between characteristics and solutions, the web of characteristics still contains valuable
information, as was also shown by Rieutord et al. (2001) for the Darboux equation.
For example the wave attractor still corresponds to the location of singularities and
thus to the regions of maximal kinetic energy. In fact, the solution of (4.6) in the
neighbourhood of the attractor can be expected to be similar to the solution of (2.8)
since the derivatives become very large there and the α2ψ-term can thus be neglected.

4.3. Solving the Tricomi BVP for a trapezium

Let us finally consider solutions of the Tricomi BVP

ψyy + yψzz = 0, with ψ = 0 at ∂M. (4.8)

Classically, the Tricomi BVP is given by a boundary curve in the elliptic domain
(where y > 0) that intersects with the turning curve y = 0 at A and B , say. The
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Figure 5. | ∇ψ |2 for (a) the two-dimensional Poincaré BVP (3.1), (b) the Telegraph BVP
(4.6) with α = −0.9, and (d , f ) the Tricomi BVP (4.8) for two different slopes. In (c) and
(e) the characteristic webs are shown. Owing to the smaller slope of the left boundary,
the characteristics of (c) converge faster towards the wave attractor than in (e). The two
fundamental intervals are shown by bold line segments along the upper boundary in (c)
and (e).

‘boundaries’ in the hyperbolic domain (where y < 0) are given by two characteristics
starting at A and B , respectively, and intersecting at a point C in the hyperbolic
domain. Dirichlet data are prescribed along the boundary in the elliptic region, and
along a certain part of the two characteristics in the hyperbolic region. The goal is to
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find regular solutions over the area enclosed by these ‘boundaries’ (Manwell 1979). In
contrast, here we try to solve (4.8) for a boundary geometry that appears to be more
useful in the GFD context: M is considered to be a semi-infinite domain, bounded by
two lines where z is constant, and a lateral, sloping boundary that closes the domain
in the negative y-direction. To the right, the hyperbolic region is ‘bounded’ by the
turning curve y = 0 (see figure 5c–f ). Nevertheless, the series solution discussed
below will also be valid for the elliptic region y > 0. As in the previous examples,
for this geometry we expect to find solutions with sharp internal boundary layers.
It should be noted that like the Telegraph equation, the Tricomi equation does not
have a formal solution such as ψ = f (ζ ) + g(η), where ζ and η are the characteristic
coordinates. Moreover, the characteristics of (4.8) differ from the characteristics of
(3.1) and (4.6) (Myint-U 1987, pp. 30–34).

In a strip y ∈ �, z ∈ [π/4, 3π/4] with boundary condition ψ = 0 at z = π/4, 3π/4,
and ψ → 0 for y → ∞, solutions of (4.8) are ψn ∼ Ai((2n)2/3y) sin(2n(z + π/4)). Thus,
for a geometry like the one shown in figure 5(c–f ), we can try to find solutions in
the form

ψ ≈
N̄∑

n=1

anAi((2n)2/3y) sin(2n(z + π/4)), n = 1, 2, 3, . . . . (4.9)

To obtain a simple wave attractor we tilt the left-hand sidewall by two different slopes:
z(y) = −1.963y − 1.906 causing a fast focusing towards the attractor, and z(y) =
−7.853y − 12.336, causing a slow focusing (see characteristic webs in figure 5(c, e).
For the less steep slope, fundamental intervals one and two are [yb − 0.4, yb] and
[−0.8267 . . . , 0], respectively, where yb = −(3π/4)2/3. For the steep slope, the intervals
are [yb − 0.1, yb] and [−0.3382 . . . , 0]. Then we proceed analogously to § 4.1 to obtain
the matrix equation (4.5). In contrast to the previous examples we have to require
ψ = 0 along the whole slope since ψ now lacks symmetry.

For the Tricomi BVP, the condition number of A is in general much larger than for
(3.1) and (4.6). This means that solutions depend more strongly on the number and
distribution of the collocation points. For the two choices given above the condition
number is 7.00 . . . 107 (fast focusing) and 1.28 . . . 1012 (slow focusing), and A is said
to be ill-conditioned. For ill-conditioned matrices it is not straightforward to do the
inversion numerically to solve (4.5). However, the inverse of A can be estimated by
employing a technique related to the Moore–Penrose generalized inverse (Moore 1920;
Penrose 1955; Aster, Borchers & Thurber 2005). Using singular value decomposition
(SVD) we can write the inverse of A as

A−1 = V · W−1 · UT , (4.10)

where UT is the transpose of the left, and V is the right singular vector of A. W−1 is
diagonal with the elements 1/wj , where wj is the j th singular value of A. To estimate
the optimal a = A−1 · b (in a least-square sense) we have to replace large 1/wj -values
by zeros and then compute A−1 by (4.10) (Press et al. 1986). One option for selecting a
‘good’ solution (Aster et al. 2005) is to compute ε =|| A · ãk − b ||2 (where ãk stands for
a when k reciprocal singular values have been replaced by zeros to compute A−1 · b)
and then use that k that gives a minimum ε.

Figure 5(d ,f ) shows |∇ψ |2 for N̄ = N + J1 + J2 = 53 + 26 + 16 = 95 and for
N̄ = N + J1 + J2 = 39 + 19 + 19 = 77 by using k = 4. We use the same data in the
fundamental intervals as in the previous examples. The collocation points are equally
distributed with ys(1) = −2.155 . . ., yf1

(1) = ys(1), and yf2
(1) = −0.776 . . . for the case

with the less steep slope, and ys(1) = −1.865 . . ., yf1
(1) = ys(1), and yf2

(1) = −0.321 . . .
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Figure 6. Streamfunction ψ for (a) the Poincaré, (b) the Telegraph, and (c) the Tricomi BVP
with a strong and (d) a weak focusing. The streamfunction is taken along a characteristic
starting at the upper right corner of figures 5(a), 5(b), 5(d), and 5(f ) respectively, and ending
at z = π/2. The dotted lines in (d) show the solution when enlarged by a factor 7.28 103 (right
part) and by a factor 29.54 (left part).

for the other case with the steep slope. As in the previous examples, we find internal
boundary layers with large streamfunction gradients. Figure 5(c, e) shows webs of
characteristics and the wave attractor for the Tricomi BVP. Note that the wave
attractor is identical for both slopes. Clearly, this wave attractor agrees well with the
position of the strongest internal boundary layers for both cases considered. However,
figure 5(f ) shows more ‘secondary’ shear layers than figure 5(d). The layers seem to
converge towards the wave attractor, as is implied by the characteristic web shown
in figure 5(e). This pattern is reminiscent of solutions recently presented by Rieutord
& Valdettaro (1997) (their figure 4) and Ogilvie & Lin (2004) (their figure 11) for the
geometry of a spherical shell. Moreover, when focusing is weak, the streamfunction
of the Tricomi BVP becomes large at the internal boundary layer. In other words, the
solution of the Tricomi BVP is more localized when characteristics converge slowly
towards the wave attractor.

This is evident in figure 6, where we plot the streamfunction corresponding to
figures 5(a), 5(b), 5(d), and 5(f ) along a characteristic that starts at the upper right
corner and ends at z = π/2. Whereas the streamfunction amplitude of the Poincaré,
the Telegraph, and the strongly focusing Tricomi BVP remains mainly constant,
it doubles at the intersection of the characteristic with the wave attractor for the
Tricomi BVP with weak focusing. The exact position of this intersection is given by
two characteristics, one sloping downward and starting at (y, z) = (0, 3π/4), the other
one sloping upward and starting at (y, z) = (0, 3π/8). The latter corresponds to the
upper right branch of the attractor, shown in figure 5(c, e). The two characteristics
intersect at (y, z) = ((−3π/16)2/3, 5π/8) ≈ (−0.70, 1.96); for the case with strong



346 U. Harlander and L. R. M. Maas

focusing (figures 5d , 6c), the maximum of |∇ψ |2 can be found at this location. For
the other case, the maximum is at about (−0.67, 1.98) (see figures 5f , 6d). Note that
the streamfunction shows a maximum where the wave attractor touches the turning
curve y = 0 (see figure 5d , f ). There the magnitude of the streamfunction is 3.37
(1.73) times larger than the peak value of |ψ| in figure 6(c) (figure 6(d)). Note further
that the solutions used to plot figure 5(d , f ) are also valid for y > 0.

In summary we can conclude that for the Tricomi BVP as well, where we do
not have a direct relationship between characteristics and solutions, the web of
characteristics can still be used to predict the position of singularities, i.e. the region
of maximal kinetic energy (Dintrans et al. 1999).

5. Conclusion
Hyperbolic BVPs are difficult to solve since they form mathematically ill-posed

problems. A typical feature of such problems is the occurrence of internal shear
layers. Energy is strongly localized and no general solution technique is available for
these kind of problems. The purpose of the present paper was to add two alternative
techniques to the methods already existing.

One technique solves the two-dimensional Poincaré equation by iteratively adjusting
the boundary from a non-focusing geometry, where characteristics undergo specular
reflections, to a final geometry with focusing reflections. It was shown that the
convergence rate of the method depends on the strength of focusing. The new method
appears to be faster than the method by Maas & Lam (1995) since characteristics
do not have to be traced into fundamental intervals. In fact, fundamental intervals
are not needed at all. We considered the rather simple geometry of a rectangle with
a sloping part at the bottom. However, it is straightforward to find solutions for
more complicated geometries: after having constructed a solution for a boundary
‘perturbation’ as shown e.g. by the dashed lines in figure 1, a second (or third, etc.)
similar local ‘perturbation’ could be added and a corresponding solution could be
obtained iteratively.

The other method proposed is a boundary collocation method. The idea is to
superpose smooth solutions (corresponding to a non-focusing boundary geometry)
such that, at a set of collocation points along the ‘perturbed’ part of the boundary
and along the fundamental intervals, the solution fulfils the boundary conditions.
This gives a discrete linear inverse problem finding unknown coefficients from a
linear system of algebraic equations. The advantage of this numerical technique is
that it can be applied not only to the two dimensional Poincaré BVP (3.1), but also
to more general problems like the Telegraph BVP (4.6) or the Tricomi BVP (4.8),
both playing an important role in geophysical fluid dynamics. We first verified the
boundary collocation technique by computing the solution for the two-dimensional
Poincaré equation in a trapezoidal domain, a problem already solved by Maas et al.
(1997). Next we solved the Telegraph equation for the same boundary geometry. The
solution loses its symmetry. However, we found an internal shear layer at the same
position as for the Poincaré problem. For the Tricomi BVP we realized that the matrix
that has to be inverted is ill-conditioned, i.e. the ratio of the largest and the smallest
singular value of the matrix is large. In this case solutions of the inverse problem
are not stable in the sense that they strongly depend on the number and distribution
of collocation points; the matrix cannot be inverted numerically without using a
regularization technique. To find the solution shown in figure 5(d) we computed the
generalized inverse and estimated the optimal solution by minimizing the error with
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respect to the L2-norm. This technique is known as Tikhonov regularization (Aster
et al. 2005).

In agreement with the solutions of the Poincaré and Telegraph BVPs, energy is
localized at the wave attractor, that is the limit cycle of the web of characteristics
shown in figure 5(c). However, in contrast to the other two BVPs, the streamfunction
itself is strongly localized for the Tricomi problem: the maximum is located where
the wave attractor reflects from the turning curve marking the boundary between
the hyperbolic and the elliptic model domain. Such a local maximum can be seen
as a strong point source at the boundary of the elliptic region. Thus focusing in the
hyperbolic region of a mixed BVP might lead to a deep penetration of energy into
the elliptic domain. This could have implications for telecommunications through
the oceans or the atmosphere, where equatorial and extratropical waveguides are
separated by elliptic regions. Owing to focusing in the equatorial hyperbolic region
there might be an effective ‘tunnelling’ of low-frequency waves through the elliptic
domain, triggering Rossby waves in the extratropics. Further work is required to
understand better this possibility of tropical–extratropical interaction.

In Appendix B we roughly estimate time mean dissipation rates D̄ for the two-
dimensional Poincaré BVP when Rayleigh friction or viscous damping is switched
on at t = 0. For this purpose we assume that the time scale of the damping is
much larger than the time scale of the oscillations. By using the series solution (4.1)
we obtain compact expressions, for Rayleigh friction as well as viscous damping. In
future work we hope to find analytic expressions for the coefficients. Moreover, we
will try to include forcing in order to compare the results with recent findings on the
non-zero asymptotic dissipation rate of tidal disturbances (Ogilvie 2005).

It should be noted that we did not solve a general hyperbolic initial BVP. For
certain elliptic problems (e.g. the Helmholtz equation with Dirichlet boundary
conditions), solutions for arbitrary initial data can be constructed by superposing
eigenfunctions, forming a complete set of orthogonal functions. For hyperbolic
BVPs, spectra are usually dense and solutions constructed for different frequencies
are usually not orthogonal for any choice of data in the fundamental intervals. For
some hyperbolic BVPs it is known that only singular solutions exist. So it remains
mathematically challenging to find the time evolution of such problems starting
from an arbitrary (smooth) initial field. Nevertheless, the development of reliable
techniques to solve hyperbolic BVP is certainly indispensable to tackle hyperbolic
initial BVPs in the future.

We thank Theo Gerkema and Sjef Zimmerman for heplful discussions and the
anonymous referees for many constructive suggestions improving the paper. U.H.
was supported by the Netherlands Organization for Scientific Research (N.W.O.)
under grant 813.03.004 (ALW3PJ/03-23).

Appendix A. The Riemann method
At a given point P = (η0, ζ0) the solution of a linear second-order hyperbolic

equation

ψηζ + aψη + bψζ + cψ = 0 (A 1)
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Figure 7. (a) Definition of P , A, and B . (b) A local change of ψ along the data curve where
ψy = 0 changes the solution of the Poincaré problem between the characteristics 1,2 and 3,4.
For more general problems the solution will be changed in the hatched area.

can be written as (Myint-U 1987, pp. 76–83),

ψP =
1

2
((ψR) |A + (ψR) |B) −

∫ B

A

ψR (adη − bdζ )

−1

2

∫ B

A

ψ(Rζdζ − Rηdη) +
1

2

∫ B

A

R(ψζdζ − ψηdη), (A 2)

where (η, ζ ) are the characteristic coordinates and R = R(P, η, ζ ) denotes the
Riemann function, and A, B give the position of intersection of the c−- and c+-
characteristics with the curve on which data are prescribed (see figure 7). To obtain
straight characteristics with slopes ±1 we introduce (y, z) = (ζ − η, ζ + η). In these
coordinates (A 2) becomes

ψP =
1

2

(
(ψR) |A + (ψR) |B

)
− 1

2

∫ B

A

ψR ((a − b)dz − (a + b)dy)

−1

2

∫ B

A

ψ
(
Rzdy + Rydz

)
+

1

2

∫ B

A

R
(
ψzdy + ψydz

)
. (A 3)

For the Poincaré equation, a = b = c = 0 and R = 1. If we prescribe data ψ = f (z),
ψy = 0, along a curve y = constant, then only the first two terms on the right-hand
side of (A 3) are non-zero. Note that for the Telegraph and Tricomi equations as well,
the Riemann functions are known (Myint-U 1987; Manwell 1979). However, for a
closed domain, only the Poincaré equation can be solved using (A 3). The reason is
that: (i) the inverse problem of finding ψ-data from the condition ψP = 0 along a
curve l is complicated when a, b �= 0 and R = R(y, z); and (ii) changing ψ locally
along the data curve while keeping ψy = 0 gives a local response for the Poincaré
BVP but a global response for more general problems that have non-vanishing second
and third terms in (A 3) (see figure 7b).

Appendix B. Dissipation
With the spectra an to hand we can ask how much energy will be dissipated in a

given time when we switch on a dissipative term.
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Let us write a prototypical vorticity equation as

∂2

∂t2
∇2ψ − F = −ν

∂

∂t
R, (B 1)

where F denotes other linear terms in ψ , and R is a damping term, given as R =
(−1)m∇2m∇2ψ . The constant ν is the kinematic viscosity coefficient, and m = 0, 1, 2, . . .,
determines the damping characteristic. (For m = 0 damping is due to the so called
Rayleigh friction; for m = 1 damping is caused by momentum diffusion. Models with
m > 1 are called hyper-diffusive.) We assume that ψ = ψ (̃t, T , y, z), where t̃ = t is the
fast time scale of the oscillation, and T = νt/2 is the slow time scale of the damping.
Then the time derivative can be written as ∂/∂t = ∂/∂t̃ + (ν/2)∂/∂T . If the solution
of (B 1) is written as ψ =

∑
n ân(T )ψn(y, z) exp(ĩt), we find to order ν0 and order ν1

ν0 :
∂2

∂t̃2
∇2ψ − F = 0, (B 2)

ν1 :
∂

∂t̃

∂

∂T
∇2ψ +

∂

∂t̃
R = 0. (B 3)

From (B 2) we see that the ψn are simply the inviscid modes, corresponding for
example to (3.1) or (4.6). Finally, from (B 3) we obtain ân = an exp(−νk2mt), where
k is the total wavenumber and the an are the coefficients of the inviscid problem,
determined via the boundary conditions.

With the spectrum ân to hand, we can now estimate the dissipation rate

D(t) =

∫
M

ν | ∇m+1ψ |2 dy dz, m = 0, 1, (B 4)

for non-conservative hyperbolic BVPs. Note that in figure 5(a, b, d , f ) we plotted
the integrand of (B 4) for m = 0; that is the plots show the spatial distribution of
the dissipation rate. Clearly, dissipation will be large at the wave attractor and its
neighbourhood.

In the following we estimate a mean dissipation rate for the two-dimensional
Poincaré BVP (2.8). To perform the spatial integration we can make use of the fact
that the attractor solution is valid not only over the trapezium, but also over the
square y ∈ [0, π], z ∈ [0, π] (see figure 4a). In other words, we first rotate the triangle
given by (y, z) = (π, π/2), (π, π), (4π/3, π) clockwise by π and then integrate over the
square with length π. This integration is equal to the integration over the trapezium.
We find

D(t) =

{
ν 1

2
π2

∑
n n2â2

n if m = 0,

νπ2
∑

n n4â2
n if m = 1.

(B 5)

Finally, the time mean dissipation rate results from integrating (B 5) over time

D̄ =

∫
D(t) dt = −π2

4

∑
n

e−s(n)n2a2
n, (B 6)

where

s(n) =

{
2νt if m = 0,

4νn2t if m = 1.
(B 7)

Considering the time period from t = 0 to t = t̄ we find that, for a bounded
D̄, the coefficients a2

n have to converge faster than n−2. This is the case for the
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truncated solution, as can be seen in figure 4(c). However, for a mathematically sound
understanding of the convergence, an analytic expression for the coefficients is needed.

By specifying t̄ = 1/(2ν), we can expect from (B 6) that, because of the fast decrease
of exp(−2n2) with increasing n, the ratio between the viscous and the Rayleigh
friction damping rate will be about e/(e − 1) ≈ 1.582. Using the coefficients shown in
figure 4(b), we indeed find a ratio of 1.584. Hence, when averaged over a period as
long as 1/(2ν), Rayleigh damping is almost as effective as viscosity. Note that for the
solution shown in figure 4(a), only the coefficients with even n are non-zero.
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